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TWO POINT EXPONENTIAL APPROXIMATION METHOD FOR

STRUCTURAL OPTIMIZATION OF PROBLEMS

WITH FREQUENCY CONSTRAINTS
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Georgia Institute of Technology
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Abstract The Two Point Exponential Approximation Method was introduced

by Fadel et al. (Fadel, 1990), and tested on structural optimization problems

with stress and displacement constraints. The results reported in earlier

papers were promising, and the method, which consists in correcting Taylor

series approximations using previous design history, is tested in the present

paper on optimization problems with frequency constraints. The aim of the

research is to verify the robustness and speed of convergence of the Two

Point Exponential Approximation method when highly non-linear constraints
are used.

Introdo_tiQn

In the practice of optimization, especially when complex structural, thermal,

aerodynamic or other analyses are needed, the computer time required to

perform the analyses is critical. Most large optimization problems have been

formulated such that the number of full scale analyses are minimal. This is

generally accomplished by reducing the original problem to an approximate,

simpler model which can be optimized within certain constraints. The

original problem is then solved with the optimized approximate design

variables, and iterations are performed until overall convergence is attained.

The critical aspect of the procedure is the quality of the approximation. For a

very highly non-linear problem, linear approximations are valid only in a

very small domain around the original design point, whereas in better

behaved problems, larger moves can be accomplished. The trade-off

between the quality of approximation and number of real analyses is what

dictates the overall time needed for reaching the optimum (if at all

reachable).

Derivation of the Two Point Exponential Approximation

Several traditional approximation methods were summarized in the paper by

Fadel et al (Fadel, 1990) ranging from the simple Taylor series in the form:



g(X) ffi gC_) + Z (Xi- Xoi) _g(X°'--_)

i _xi

to the reciprocal, hybrid, and higher order approximations. The authors then

introduced the Two Point Exponential approximation which is an extension of

the simpler Taylor series, adjusted by matching the derivatives at the

previous design point. This correction term is incorporated into an exponent

which is computed after each real analysis for each constraint, and with

respect to each design variable. The exponent acts as a measure of goodness

of fit: If the linear approximation is valid for a certain constraint, the

exponent is close to or equal to 1, if the reciprocal approximation is more

appropriate, the exponent approaches or is equal to -1. In other cases, the

exponent varies between -1 and 1, correcting the approximation and

improving the fit of the data.

The Two Point Exponential Approximation is derived as mentioned earlier by

matching the slopes at previous design points. Initially, one substitutes x pi

for x in the Taylor series:

g(X) = g(Xo) + _ (x_- _i) _g(Xo)
i _X_

and after resubstitution, one can write:

8g(Xo)
g(X) = g(Xo)+ _L f[ xi _p,_l)__.i -_Xoi! Pi

i _Xi

with the exponent evaluated according to:

Pi =

log

The point X1 refers to the design point at the previous iteration and Xo refers

to the current design point from where the approximation is carried out.

Note that at the first iteration, since no previous design history exists, a

linear or reciprocal step is carried out, depending on the preference of the

user.
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The results reported in the earlier paper compared the linear, reciprocal and
Two Point Exponential approximations on structural problems with stress
and displacement constraints. Three problems of different sizes were used,
namely the standard three bar truss problem, a 25 bar truss transmission
tower, and a 52 bar truss tower. The results showed that the Two Point
Exponential approximation generally displayed a much smoother behavior
than the other two methods. It contributed to reducing the oscillations
between successive iterations, and required less iterations to reach the
optimum in most cases. The overhead involved in computing the exponents
proved to be insignificant. The exponents have to be computed after each
real analysis and used during the optimization of the approximate problem.
Care has to be taken in the code development to avoid divisions by zero, and

to avoid having to compute the logarithm of a negative number. In such

cases, the algorithm should be written in a way that it would revert to a

linear or reciprocal step.

Two Point Exponential Approximation and Frequency Constraints

After ascertaining the merit of the approximation in the case of stress and

displacement constraints, it was suggested to test the method on frequency

type constraints. The frequency constraints are generally highly non-linear,

and further testing of the method was warranted to confirm its value for

general structural optimization problems. For this purpose, two test

problems of different complexity and size were selected. The approximation

method is tested on both the problems, and results and conclusions are

reported. Both problems were taken from the literature to ensure

correctness.

Test problem: Cantilever Beam

The first test problem is taken from Pritchard and Adelman (Pritchard,

1990). The 193 inch long hollow cantilever beam with square cross section

(Figure 1) has four design variables: the height and width of the beam cross-

section, and the two wall thicknesses (sides, top and bottom). The beam is

divided into ten elements. The first element near the base has a slightly

different modulus of elasticity, but all other characteristics are uniform over

the length of the beam. The dimensions and physical characteristics of the

standard beam Xo are"

H = 5.00 in

B = 3.75 in

t = 0.80 in

d = 0.10 in



and moduli of elasticity: (Element 1 is at the wall)

E2-10 = 5.85E6

E1 = 4.90E6

Fisure 1. Cantilever Beam (Pritchard, 1990)

The problem was analyzed using the ANSYS (Swanson, 1990) finite element

package, and optimizations were carried out with the program CONMIN

(Vanderplaats, 1973). The first test consisted in evaluating the

approximations to the first bending frequency when one variable was

modified. The height of the beam cross section was selected as the design

variable, and the results are tabulated in Table 1.

H linear reciprocal exact 2 ptexp.
2 1.7303 -3.64094 1.67448 1.62987
3 2.9239 1.332393 2.88837 2.88399
4 4.1175 3.81906 4.10689 4.10836
5 5.3111 5.31106 5.31106 5.31106
6 6.5047 6.305727 6.49736 6.49678
7 7.6983 7.016203 7.66538 7.66855
8 8.8919 7.54906 8.81562 8.82852

9 10.085 7.963504 9.94882 9.97827
10 11.279 8.29506 11.0658 11.119

dfdhO= (H=5) 1.1936

dfdhl= (H=6) 1.17833

H rel err lin [%] rel err 2pt [%1
2 1.050261153 0.83990199
3 0.668228188 0.08239831
4 0.199018652 0.027637706
5 0 0
6 0.137449021 0.010981808
7 0.619085456 0.059730265
8 1.435494986 0.242964664
9 2.572744424 0.554566968

10 4.01539429 1.002004366

p= 0.929378792

Table 1. Cantilever Beam analysis. Evaluation of approximations

based on Beam Height H.
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These results are illustrated in Figure 2. The errors resulting from both the

linear and Two Point Exponential approximations are plotted as a function of

the beam height H. The reference point Xo is the point H=5, and the Two

point Exponential approximation uses the previous analysis point at X1 as

the point where H=6. The graphs show the superior performance of the new

approximation in the case of changes in one design variable.
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Figure 2. Approximation error as a function of beam height H

Cantilever Beam Problem

When one considers variations in multiple variables simultaneously, the

advantages of one approximation versus another are less easily

demonstrated. In this study, we first considered changing all four variables

of the cantilever beam problem simultaneously by progressive percentages.

Figure 3 illustrates the relative errors of the approximations of the first

bending frequency as a function of the relative change in all four design

variables. These changes are certainly not indicative of performance within

an optimization exercise, but they do provide some measure of goodness

easily displayable. Note that the starting point for the approximation is the

point with abscissa 0. The linear approximation is carried out from this point

forward (increasing all four design variables by x%), and then backward

(decreasing all four variables by x%). For the Two Point Exponential

approximation, the starting point is the same Xo, and the "previous" design

point X1 is at abscissa x=.2. In this case, increasing x means backtracking,

whereas decreasing x means progressing in the direction established by the
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two successive design points. The figure shows that the Two Point

Exponential approximation seems to better fit the real function below the

design point, and is slightly worse than the linear approximation above the

design point. It is hoped that during an optimization, the design variables

would either increase or decrease monotonically, and the Two Point

Exponential approximation would perform better than the linear. Note that

the results of both approximations were very sensitive to the derivatives

obtained through finite differences in the analysis program (ANSYS).

The true test of an approximation however, is to perform the optimization

exercise. This is the subject of the next section.

0.4

0.35 roximation
% 0.3

E 0.25

R 0.2 2 Pt. Exp. Approximation|

R 0.15 T _. Previous Design Pt X1

oR 0.1 "!" _ Initial Design Pt Xo /

0.05 _ _''--

-1.1 -0.9 -0.7-0.5 -0.3 -0,1 0.1 0.3 0.5 0.7 0.9 1.1

Deviation in design points (H, B, T, D)

Figure 3. Approximation error as a function of all four variables
Cantilever Beam Problem

Optimization of Ihe Cantilever Beam problem.

Since a true test of the approximations can only be obtained in an

optimization problem, the Cantilever Beam example discussed above was

reformulated as an optimization exercise. The initial design variables are the

ones given above as vector Xo, and the object of the problem is to find the

minimal weight subject to frequency constraints. The first frequency

constraint is the first bending frequency of the beam which has to be below a

certain minimum value and the second frequency above another value. This

would ensure a separation of natural frequencies, and could be used as a

design problem. The first attempt to solve the problem considered two
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design variables, namely the height and width of the beam, leaving the

thicknesses constant. The constraints (first and second frequencies) are

limited to 5 Hz and 30 Hz respectively (F1 < 5Hz, F2 >30Hz). The allowable

error is 0.1 and the move limits are 50% in all three cases. The results are

tabulated below:

Linear Reciprocal 2 Pt. Exp.
0 6.68 6.68 6.68
1 3.60146 3.62224 3.60146
2 2.13858 2.16792 2.15689

3 1.51095 1.56556 1.56387
4 1.83129 1.55081 1.5507
5 1.52809 1.55081 1.5507

6 1.54845
7

Table 2. Variation of Cross sectional area

as function of iteration number.

Because of the similarity of results, a graph of the variation of objective

(cross sectional area) with respect to iteration number would not provide any

additional information. From the table above, one can only deduce that in

this particular case, the three approximations perform relatively similarly.

All three reach the optimum in roughly the same amount of steps. The linear

approximation seems to reach a smaller optimum, but this result is because

this particular approximation in this problem causes one of the constraints to

be slightly violated, and at the final result, the second frequency constraint is

active, but very close to be violated, whereas in the two other methods, the

second frequency constraint is active, and satisfied. Table 3 lists some of the

results for the above problem. In all three cases, the beam width is driven to

the minimum (0.5 in), and the second frequency constraint becomes active.

Linear B Linear F2 Reciprocal B Reciprocal F2 2 Pt Exp B 2 Pt Exp F2
1 3.75 33.6109 3.75 33.61 09 3.75 33.61 09
2 1.875 29.6286 1.875 30.3661 1.875 29.6286

3 0.9375 29.1512 0.9375 30.0812 0.9375 29.7322
4 0.5 28.9012 0.5 30.4118 0.5 30.3652
5 0.75 28.1872 0.5 30.005 0.5 30.0019
6 0.5 29.3767 0.5 30.005 0.5 30.0019
7 0.5 29.9399

Table 3 Cantilever Beam. Active constraints as function of iteration number.

Beam width B driven to >= 0.5 in, second natural frequency driven to >= 30Hz.

When one considers all four parameters: height, width and thicknesses, as

design variables, the problem should be more complicated and the

approximations less well behaved.
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Figure 4. Cantilever beam. Cross sectional area (objective)

Four design variables, two constraints.

Figure 4. illustrates the variation of the objective with respect to iteration

number in the case of four design variables. In this case again, all three

approximations behave relatively similarly, with the linear and Two Point

Exponential approximations reaching the minimum in 5 steps whereas the

reciprocal this time, takes one additional step. The interesting observation

however, is the path to the minimum taken by all three approximations. In

order to show the differences, the value axis (area) was magnified with a

maximum at 2 inches. The first two iterations are therefore not visible, but

one can see that the Two Point Exponential approximation is the smoothest
behaved function.

Figure 5. illustrates in the same problem (four design variables, two

constraints), the variation of the second natural frequency. The problem

consisted in minimizing the area subject to the second frequency remaining

above 30Hz. The figure shows that the Two Point Exponential method shows

similar oscillative behavior as the other methods, but with a smaller

amplitude.

The two results described sofar show that for two relatively simple problems

with frequency constraints, the Two Point Exponential approximation

behaves at least as good, if not better than the best of the linear or reciprocal

approximations.

8



F
34-.-

r
33

e
32

q 31
U

3O
e

29
n

28
C

27
Y 26

25
2

0

I I I I I I

1 2 3 4 5 6

Iteration

-X. Linear "*-Reciprocal --'2 Pt. Exp.
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Variation of second frequency constraint

Conclusion

The Two point Exponential Approximation was tested on problems with

frequency constraints. The results obtained sofar show that the method is at

least as performing as the best of the traditional methods like the linear or

reciprocal approximation. It does also perform as a more controlled method

which should be used when the problem to be solved does not have

uniformly linearly behaved or uniformly reciprocally behaved constraints

and objectives.
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APPENDIX A

Numerical Results of Optimization runs

Linear approximation <=5 >=30
H B OBJ CON1 CCf¢_

0 5 3.75 6.68 5.31106 33.6109
1 4.60731 1.875 3.60146 4.68022 29.6286
2 4.79292 0.9375 2.13858 4.60463 29.1512
3 5.15476 0.5 1.51095 4.56506 28.9012
4 4.75644 0.75 1.83129 4.45203 28.1872

5 5.24046 0.5 1.52809 4.64033 29.3767
6 5.34226 0.5 1.54845 4.7295 29.9399
7

Reciprocal Approximation
0 5 3.75 6.68 5.31106 33.61 09
1 4,71122 1.875 3.62224 4.797 30.3661
2 4.93959 0.9375 2.16792 4.75187 30.0812
3 5.4278 0.5 1.56556 4.80423 30.4118
4 5.35406 0.5 1.55081 4.73982 30.005
5 5.35406 0.5 1.55081 4.73982 30.005
6

Two Point Exponential Approximation
0 5 3.75 6.68 5.31106 33.61 09
1 4.60731 1.875 3.60146 4.68022 29.6286
2 4.88447 0.9375 2.15689 4.69663 29.7322
3 5.41935 0.5 1.56387 4.79686 30.3652
4 5.35349 0.5 1.5507 4.73932 30.0019
5 5.35349 0.5 1.5507 4.73932 30.0019
6
7

Cantilever Beam results 2 variables 2 constraints
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H B
1 5 3.75
2 4.25085 1.875
3 4.3655 0.9375
4 5.27703 0.5
5 5.65837 0.5
6 5.65837 0.5
7

T
0.8
0.4
0.2
0.1
0.1
0.1

Linear
D

<=5 >=30
OEU CE_ 03N2

0.1 6.68 5.31106 33.6109
0.05 1.84509 4.69586 29.7274
0.05 0.77155 4.37265 27.6857
0.05 0.6077 4.46111 28.2445
0.05 0.64584 4.75696 30.1133
0.05 0.64584 4.75696 30.1133

1 5 3.75
2 4.13298 1.875
3 4.41934 0.9375

4 6.34962 0.5
5 5.70696 0.5
6 5.63605 0.5
7 5.63605 0.5
8

Reciprocal
0.8 0.1 6.68 5.31106 33.61 09
0.4 0.05 1.8333 4.56184 28.8809
0.2 0.05 0.77693 4.42169 27.9955
0.1 0.05 0.71496 5.2913 33.4862
0.1 0.05 0.6507 4.7946 30.351

0.1 0.05 0.64361 4.73967 30.0041
0.1 0.05 0.64361 4.73967 30.0041

1 5 3.75
2 4.25085 1.875
3 4.45606 0.9375
4 5.84612 0.521375
5 5.63885 0.5
6 5.63885 0.5

2 Pt Exponential
0.8 0.1 6.68 5.31106 33.6109
0.4 0.05 1.84509 4.69586 29.7274
0.2 0.05 0.78061 4.45508 28.2064
0.1 0.05 0.66889 4.92356 31.1652
0.1 0.05 0.64389 4.74184 30.01 78
0.1 0.05 0.64389 4.74184 30.0178

Cantilever Beam results. 4 variables 2 constraints
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APPENDIX B

Ansys input file and Program listing

H=5 o

B=3 •75

T=-0.8
D=0.1

ITITLE, Beam model for approximation testing
FINISH

/PREP7
KAN,2
KAY, 1,-1
KAY, 2,3

KAY, 7,3

C*** compute area and IZZ

IYYI= (T**3) *B

IYY2=IYYI/12

PARI=H- (T*2)

PAR3 =B- (D*2)
PAR2= (H-T)/2

IYY3= (T,B) * (PAR2**2)

IYY4= (IYY2+IYY3) *2

IYY5=D* (PAR1**3)

IYY6=IYY5/6
IYY =IYY6+IYY4

AREA= ((T,B) + (PARI*D)) *2
C*** end of calculations

ET,1,3 * 2D elastic beam

R, i, AREA, IYY,H

MP, EX, I, 4.9e6

MP,DENS, 1,0. 00018

MP, EX, 2,5.85e6

MP,DENS, 2,0. 00018

N,I,0

N,11,193
FILL

/PNUM, NODE, 1
NPLOT

MAT, 1

E,1,2

MAT, 2

E,2,3
EGEN, 9,1,2
EPLOT

D, 1, ALL

M, 2 ,UY, 11, UX, ROTZ
SAVE

ITER, 1,1
SFWRITE

FINISH

/SOLVE
FINISH

3D model

* material properties for element 1

* material properties for other elements
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/POST1

set,,l

*get,frel,freq

set,,2

*get,fre2,freq

set,,3

*get,fre3,freq
FINISH

/OPT
FACT=.99999

HI=H'FACT

H2=H/FACT
BI=B*FACT

B2=B/FACT

OPVAR,H,DV,H1,H2

OPVAR,B,DV,BI,B2

OPVAR, AREA, OBJ

OPVAR, PAR1, SV, .I,H

OPVAR, PAR3, SV, .1 ,B

OPVAR,FREI,SV,.I,10

OPVAR,FRE2,SV,.I,100.

OPVAR, FRE2,SV,.I,150.
OPCOPY

H=H*I.001

RUN,2
B=B*I.001

H=H/I.001
RUN,3
T=T*I.O01

B=B/1.001

RUN,4
D=D*I.001

T=T/I. 001

RUN,5
OPLIST,ALL,,I
FINISH

/EOF
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program to read an ANSYS file and extract the necessary data for

optimization, call conmin, and use approx to solve approximate prob:

Georges Fade1 Sept 1990
Oct 1990

Jan 1991

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
commons for CONMIN call

COMMON /CNMN1/ DELFUN,DABFUN,FDCH,FDCHM,CT,CTMIN,CTL,CTLMIN,

1 ALPHAX,ABOBJ1,THETA,OBJ,NDV,NCON,NSIDE,IPRINT,NFDG,NSCAL,LINOBJ,

2 ITMAX,ITRM, ICNDIR, IGOTO,NAC,INFO,INFOG,ITER

COMMON /CNMN2/ X(6),DF(6),G(15),ISC(15),IC(15),A(6,15),AF(7)
COMMON/CN  N4/ VLB(6) ,VUB(6) ,SCAL(6)
the next two are for approx subroutine. Second common just to pass
flags to approx

COMMON /INFOIN/ DV(4), FUNC(7), GRAD(4,7)

COMMON /INFOLD/ DVI(4), FUNCI(7), GRAD1(4,7)
COMMON /FLAGS/ IFLAG,ICALL,IDEBUG

DIMENSION P(4,7), RATX(4), RATDER(4,7)

DIMENSION S(6),GI(15),G2(15),B(15,15),C(15),MSI(30)
end of conmin non-executable

DIMENSION CONS(5,5) ,OOBJ(4) ,GMAX(6)
CHARACTER*4 START(5),T(5)

CHARACTER*12 FILNM,FILNM1,FILNM2,FILNM3
CHARACTER*80 TT

LOGICAL TOF

DATA START(1),START(2),START(3),START(4),START(5)/,LIST,,, OPT',
1 'IMIZ','ATIO','N SE'/

name of file (File=' ') written from batch file into

temp.dat is read into FNAME.

some parameters that have to be set for each optimization program:
nlines in output file

number of design variables NDV
Number of constraints NCON

Increment factor used to compute finite differences in
finite element program: FACT = i. - actual FACT

DF means derivative of objective wrt design variable

A means derivative of constraint wrt design variable
and remember to adjust dimensions to read all needed data

in X(NDV), CONS(NCON,NDV), OOBJ(NDV)

DF (NDV) ,A (NDV, NCON)

Also, the output data includes a maximum of 6 cases per row. If
NCON is more than 6, then, an additional read statement has to
written for the next batch of results.

conmin requirements +++++++++++++++++++++++++++++

IGOTO Sets start of optimization loop

IPRINT Print control: 0 print nothing

1 print initial and final function informat

2 1st debug level print 1 + control paramet
function value and X at each iteration.

3 2nd debug level print 2 + constraints, ac

or violated constraints, move parameters.



C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

NDV

ITMAX

NCON

NSIDE

G

CONS

ICNDIR

NSCAL

NFDG

FDCH

FDCHM
CT

CTMIN

CTL

CTLMIN

THETA

NACMX1

DELFUN

DABFUN

LINOBJ

ITRM

X(N1)

VLB (NI)

VUB (NI)

approaches 0 as optimum gets closer

4 full debug
Number of decision variables

Max number of iterations

Number of constraint functions G(J)

Number of side constraints (upper, lower bounds)

Constraints at initlal design point
Constraints at finite differences

Conjugate direction restart parameter

Scaling control parameter

Gradient calculation control parameter 0: calculated by F

1: externally supp

2: obj external, r
Relative change of decision varlable for FD calc.

Minimum step for FD

Constraint thickness parameter
Minimum abs value of CT

Constraint thickness for linear and side constraints
Minimum abs value of CTL

Mean value of push off factor(for highly non-linear probl
Estimate of number of active constraints

Minimum change in OBJ to indicate convergence
Same as DELFUN, but absolute not relative error

0 means non-linear, 1 means linear

(3) number of consecutive iterations for convergence
Vector of decision varlables

Lower bound on variables X(I)

Upper bound on variables X(I)

SCAL(NS) Vector of scaling parameters not used if NSCAL=0
ISC(N2) Linear constraint identification vector

GMAX(NCON) LIMITS OF CONSTRAINTS

IPRINT=2 SUPPLIED IN EXTERNAL FILE

NDV=4 SUPPLIED IN EXTERNAL FILE

SET NUMBER OF CONSTRAINTS TO REQUIRED NUMBER (INITIALLY 1, THEN 6)
NCON=I SUPPLIED IN EXTERNAL FILE

C

IGOTO=0

NFDG=0

ITMAX=50

NACMXI=I5

NSIDE=8

ICNDIR=0

NSCAL=O

LINOBJ=0

NI=6
N2=15

N3=15

N4=15

N5=30

ITRM=3

FDCH=0.

FDCHM=0.

CT=0.

CTMIN=0.

CTL=O.

CTLMIN=0.

THETA=0.

DELFUN=IO.E-8
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C
C

C
C

DABFUN=I 0. E-8

NAC=0

ALPHAX=0.1

ABOBJI=0.1

ICALL=I

DO 9 I=l,N2

ISC(I) =0
CONTINUE

end of conmin variables definition
++++++++++++++++++

NLINES=20000
FACT=0. 001

++++++++++++++++++ MAKE SURE THIS IS CORRECT TOTAL NUMBER OF •

AND INCREMENT FACTOR IN ANSYS FOR DERIVATIV

C

C

C

C

C

create a file called OPTIM.DAT in which the filenames of the

initial result data file and file to be used to store results are

written. One name on each line. Next, enter a number representing
the magnitude of the move limits in %

OPEN(UNIT=3,STATUS='OLD',FILE='OPTIM.DAT')

read(3,99)FILNM,FILNM1,FILNM2,FILNM3

read(3,98)GMOVE

read(3,*)NDV,NCON

read(3,*)IDEBUG,IPRINT

read(3,*) (GMAX(I),I=I,NCON)
CLOSE(UNIT=3)

OPEN(UNIT=8,STATUS='OLD',FILE=FILNM)

OPEN(UNIT=9,ACCESS='TRANSPARENT',FORM='UNFORMATTED',FILE=FILNM1)

OPEN(UNIT=10,STATUS='OLD',FILE='HISTORY.DAT')
OPEN(UNIT=ll,STATUS='OLD',FILE='FLAGS.DAT')

C *****************************************************************

C READ FILNM TO EXTRACT INFO FOR DERIVATIVES CALCULATION

C

C

C

C

C

C

I0

C

C

C

READ(8,100) T(1) ,T(2) ,T(3) ,T(4) ,T(5)

DO i000 L=I,NLINES
find first line of results

IF(T(1).NE.START(1).OR.T(5).NE.START(5)) THEN

READ (8, IO0)T(1) ,T(2) ,T(3) ,T(4) ,T(5)
ELSE

READ (8,101)

read some blank lines to get to beginning of data
initially do 10 i=l,ndv THIS SHOULD BE ACCORDING TO FILE

if (idebug. ge. 3) PRINT *, ' DESIGN VARIABLES '

DO i0 I=l, 4

read the design variables X(I)

READ(8, i02) X(I)

if(idebug.ge.3) PRINT *, X(I)

Compute the move limits

VLB (I) =X (I) * (i. -GMOVE/i00. )

VUB (I) =X (I) * (i. +GMOVE/i00. )

if (idebug.ge. 3) PRINT *, VLB(I),VUB(I)
CONTINUE

ADD THE FOLLOWING LOWER BOUNDS FOR PROBLEM TO BE REALISTIC

IF(VLB(1).LE.2.) VLB(1)=2.0



C

C

C

C

C

C

13

11

C
C

C

12

1

IF (VLB (2) .LE. 0.5) VLB (2) =0.5

IF(VLB (3) .LE. 0. I) VLB (3) =0.1

IF (VLB (4) .LE. 0.05) VLB(4)=0.05

and upper limits

IF (VUB (i). GE. 15. ) VUB (i) =15.0

IF (VUB (2). GE. 15. ) VUB(2) =15.0

IF(VUB(3).GE.(X(2)/2.)) VUB(3)=X(2)/2.

IF(VUB(4).GE.(X(1)/2.)) VUB(4)=X(1)/2.

Read some more blank lines

READ(8,103)

and then the Objective function at the design point OBJ

and the objective at finite differences from the origin

READ (8,104) OBJ, (OOBJ (J), J=l, NDV)
if(idebug.ge.l) THEN

PRINT *,' OBJECTIVE AND RESULTS OF FDs '

PRINT *, OBJ, (OOBJ(J) ,J=I,NDV)
ENDIF
convert constraints into <=0 constraints and scale

if(idebug.ge.l)PRINT *,' CONSTRAINTS AND RESULTS OF FDs

DO ii J=I,NCON

READ(8,104) G(J), (CONS(J,K),K=I,NDV)

if(idebug.ge.1) PRINT *, G(J),(CONS(J,K),K=I,NDV)

G (J) =G (J)/GMAX (J) -i.

IY(J. EQ. 2) G (J) =-G (J)

DO 13 KK=I,NDV

CONS (J, KK) =CONS (J, KK)/GMAX (J) -1

IF(J.EQ. 2) CONS (J, KK) =-CONS (J, KK)
CONTINUE

if(idebug.ge.l) PRINT *,' CORR ',G(J),(CONS(J,K)

,K=I,NDV)
CONTINUE

Now compute the derivatives:

DO 12 I=I,NDV

DF (I )= (OOBJ (I )-OBJ) /X (I )/FACT
if(idebug.ge.l) PRINT *,'OBJ DER ',DF(I)

DO 12 J=I,NCON

A(I, J) =(CONS (J, I)-G(J) )/X(I)/FACT

if(idebug.ge.l) PRINT *,' DERIV ',A(I,J)
CONTINUE

C

C

C

1

w r i t e values to confirm

WRITE(9)NDV,(X(I),I=I,NDV),OBJ,NCON,(G(J),J=I,NCON),

(DF(II),II=I,NDV),((A(K,M),K=I,NDV),M=I,NCON)
if(idebug.ge.2) THEN

print *,' SUMMARY '

print *,NDV,(X(I),I=I,NDV)

print *,OBJ,NCON,(G(J),J=I,NCON)

print *,(DF(II),II=I,NDV)

print *,((A(K,M),K=I,NDV),M=I,NCON)
ENDIF

replace values into

be passed to approx

FUNC (1)=OBJ

DO 20 I=I,NDV

DV(I) =X(I)

GRAD (I, I) =DF (I)

conmin arrays and form.

through common.

they will
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21

1000

DO 20 JJ=I,NCON

GRAD (I, JJ+l) "A (I, JJ)
CONTINUE

DO 21 J=I,NCON

FUNC (J+1) =G (J)
CONTINUE

GOTO 999

ENDIF

CONTINUE

C

999

C

310

CLOSE

CONTINUE

INITIALIZE CONSTRAINT IDENTIFICATION VECTOR, ISC.

DO 310 J=I,NCON+I

ISC(J)=0

C SOLVE OPTIMIZATION.

350 CONTINUE

if(idebug.ge.2)print *,'before conmln',X(1),X(2),X(3),X(4)

CALL CONMIN(X,VLB,VUB,G,SCAL,DF,A,S,G1,G2,B,C,ISC,IC,MSI,

i NI,N2,N3,N4,N5)

C

C

C

C

C

363

361

362

if(idebug.ge.2)print *,'after conmln',X(1),X(2),X(3),X(4)

IF(IGOTO.EQ.0) THEN

reached optimum

if(idebug.ge.2)then

print *, 'final results'

print *, ' '

print *, 'OBJECTIVE - ',OBJ

print *,' X VECTOR ',(X(I),I=I,NDV)

print *,' G VECTOR ', (G(J),J=I,NCON)
endif

WRITE(10,*) OBJ, (X(I),I=I,NDV),(G(J),J=I,NCON)

write info to new file to rerun ansys

first, we have to read the input file for ansys and then rewrite
it with new values

OPEN(UNIT=4,STATUS='OLD',FILE=FILNM2)

OPEN(UNIT=5,STATUS= UNKNOWN ,FILE=FILNM3)
READ AND WRITE FILE

WRITE(5, ii0) (X(I), I=I,NDV)

DO 363 NN=I,NDV

READ(4,*) TT
CONTINUE

DO 361 NN=I,NLINES

READ(4,111,END=362) TT
WRITE(5,111)TT

CONTINUE

CONTINUE

ICALL=I

REWIND(II)

WRITE(11,112)ICALL, IFLAG

CLOSE(UNIT=11)



C

C

C

C

C

C

C

1

1

2

1

1

2

1

1

2

S T O P

ELSE

no convergence yet ...

rewind(11)

READ(11,112)ICALL, IFLAG

IF(ICALL.EQ.I) THEN

first call to approximation, copy file and compute exponent
IFLAG= 1 LINEAR

2 RECIPROCAL

3 TWO POINT EXPONENTIAL

ICALL= 0

REWIND (1 I)

WRITE (11,112 )ICALL, IFLAG
IFLAGT=IFLAG

IF(IFLAG.EQ.3) THEN

INQUIRE(FILE='SCNDGRD.DAT',EXIST=TOF)

IF(TOF) THEN

OPEN(UNIT=7,ACCESS='TRANSPARENT',FORM='UNFORMATTED'
,STATUS='OLD',FILE='SCNDGRD.DAT')

READ(7)NDV,(DVI(I),I=I,NDV),FUNCI(1),NCON,(FUNCI(J)

,J=2, NCON+I), (GRAD1 (L, i), L=I, NDV), ((GRAD1 (K,M)

,K=I,NDV),M=2,NCON+I)
if(idebug.ge.4) then

print *, 'old point: ',(DVI(I),I=I,NDV)

print *, 'old obj. ', FUNCI(1)

print *, 'old constr ',(FUNCI(J),J=2,NCON+I)

print *, 'old grads ',((GRADI(K,M),K=I,NDV)

,M=I,NCON)
endif

REWIND(7)

WRITE(7) NDV, (DV(I), I=I,NDV), FUNC(1) ,NCON, (FUNC(J)

,J=2,NCON+I), (GRAD(L, I),L=I,NDV), ((GRAD (K,M)

,K=I,NDV),M=2,NCON+I)

if(idebug.ge.4) then

print *, 'Xo point: ',(DV(I),I=I,NDV)

' obj. 'print *,

print *, ' constr

print *, ' grads '

,M=I,NCON)
endif

CLOSE(UNIT=7)

FUNC(1)
',(FUNC (J),J=2,NCON+I)
,((GRAD (K,M) ,K=I,NDV)

ELSE

first call, no data in SCNDGRD.DAT yet. put it in
IFLAG=I

OPEN(UNIT=7,ACCESS='TRANSPARENT',FORM='UNFORMATTED'

,STATUS='NEW',FILE='SCNDGRD.DAT')

WRITE(7) NDV, (DV(I), I=I,NDV), FUNC(1),NCON, (FUNC (J)

,J=2 ,NCON+I), (GRAD (L, i) ,L=I,NDV), ((GRAD (K,M)

,K=I,NDV),M=2,NCON+I)

CLOSE(UNIT=7)
ENDIF

ENDIF

NFUNCS=NCON+I



C

C

C

C

C

C

C

1

1

711

712

1

713

710

COMPUTATION OF EXPONENT BASED ON IFLAG

DO 710 I=I,NDV

IF(DV(I) .EQ.0.) THEN

RATX (I) =i. E8
ELSE

RATX (I) =DVI (I)/DV (I)
ENDIF

if (idebug. ge. 3) THEN

PRINT *, 'INITIAL CALCULATIONS IFLAG= ', IFLAG,'X(I) = '

,X(I), I, 'DVI(I)/DV(I) ',RATX(I)
ENDIF

IF((IFLAG.EQ.I) .OR. (X(I) .E0.0. ) .OR. (RATX(I) .EQ. I.) )
THEN

if(idebug.ge.2) print *,' In linear code '
LINEAR APPROXIMATION

DO 711 J=I,NFUNCS

P(I,J)=I.
CONTINUE

ELSE

IY ((IFLAG. EQ. 2 ). OR. (DV (I). EQ. 0. )) THEN

if(idebug.ge.2)prlnt *,' In Reclprocal code '
RECIPROCAL APPROXIMATION

DO 712 J=I,NFUNCS

P(I,J)=-I.
CONTINUE

ELSE

if(idebug.ge.2)print *,' In 2 point code '
2 POINT EXPONENTIAL APPROXIMATION

DO 713 J=I,NFUNCS

IF(GRAD(I,J).EQ.0.) THEN

P(I,J)=I.
ELSE

RATDER (I, J) =GRAD1 (I, J)/GRAD (I, J)

IF((RATX(I) .LE. 0.) .OR. (RATDER(I,J) .LE. 0. ))
THEN

P(I,J) =i.
ELSE

P (I, J) =DLOG (RATDER (I, J) )/DLOG (RATX (I)) +i

IF(P(I,J) .GE. i.) THEN

P(I,J) =I.
ELSE

IY(P(I,J) .LE.-I.)
ENDIF

ENDIF

ENDIF

CONTINUE

ENDIF

ENDIF

if (idebug, ge. 2) PRINT *, 'I, EXPONENT
CONTINUE

P(I,J)=-I.

*****' ,I,P(I, 1)

IFLAG= IFLAGT

ENDIF

IF(INFO.EQ.I) THEN

AF (I)=FUNC (i)
if (idebug, ge. 3 )

DO 359 J=I,NCON
PRINT*,'OBJ ',obj



359

C

C

360

C

98
99

I00

i01

102

103

104

ii0

Cll0

111
112

C

C
C
C
C
C
C
C
C
C
C
C
C
C

AF(J+I)=FUNC(J+I)

if(idebug.ge.3)PRINT*,'CONS #',j, G(J)
CONTINUE

if(idebug.ge.2)PRINT *,'CALL TO APPROXIMATION '

this is the call to the approximation

CALL APPROX(X,AF,P,NDV,NCON)

Resubstituting values in OBJ and CONS

OBJ=AF (1 )

if(idebug.ge.3) PRINT *,'OBJ ',obj

DO 360 J=I,NCON

G(J)=AF(J+I)

if(idebug.ge.3) PRINT *,'CONS #',J, G(J)
CONTINUE

ELSE

if(idebug.ge.3)PRINT *, '# Info ne 1 ???
ENDIF

ENDIF

GOTO 350

F O R M A T S

FORMAT(F3.0)

FORMAT(AI2/AI2/AI2/AI2)

FORMAT(SA4)

FORMAT(IX,//)

FORMAT(SX,E12.6)

FORMAT(IX,��/�//���)

FORMAT(5X,6E13.6)

FORMAT('H=',EI2.6/'B=' ,El2.6/'T=' ,EI2.6/'D=' ,El2.6)

FORMAT('H=',E12.6/'B=',E12.6)

FORMAT (A80 )

FORMAT (212 )

',INFO

END

SUBROUTINE APPROX(AV,AF,P,NDV,NCON)

THIS SUBROUTINE IS CALLED FROM OPTRUN TO PERFORM

VARIOUS APPROXIMATIONS OF THE FUNCTIONS (OBJECTIVES

AND CONSTRAINTS). A FLAG WILL SELECT LINEAR,
RECIPROCAL OR IMPROVED APPROXIMATION. TWO SETS OF DATA

ARE NEEDED SINCE THE IMPROVED APPROXIMATION RELIES ON

PAST ANALYSES TO IMPROVE THE APPROXIMATION.

Georges Fadel June 1989
Oct 1990
Jan 1991

AV is the vector of VARIABLES

C

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION AV(4), AF(7), P(4,7)

COMMON /INFOIN/ DV(4), FUNC(7), GRAD(4,7)

COMMON /FLAGS/ IFLAG,ICALL, IDEBUG
NFUNCS=NCON+I

NOW THE EXPONENT IS KNOWN, LETS COMPUTE THE APPROXIMATING FUNCTION

if(idebug.ge.l) PRINT*, 'EXPONENT KNOWN '

DO 30 J=I,NFUNCS

DO 20 I=I,NDV

IF( (P (I, J). EQ. i. ) .OR. (ABS (P(I,J)) .LE. 0. 00001) )THEN

AF (J) =AF (J) + (AV (I) -DV (I)) *GRAD (I, J)
ELSE
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3O

999

IF(P(I,J).EQ.-I.) THEN

AF (J)=AF (J)+ (AV (I)-DV(I) )* (DV(I)/AV (I)) *GRAD (I, J)
ELSE

AF(J)=AF(J) +((AV(I)/DV(I) )**P(I,J)-I.)

•DV (I) *GRAD (I, J)/P (I,J)
ENDIF

ENDIF

CONTINUE

CONTINUE
RETURN

END



BEAM4.OUT
BEAM4.INP
BEAM4.OLD
BEAM4.DAT
50.
4
3
0 4
5.0 30. 80.

APPENDIX C

OPTIM. DAT file



APPENDIX D
OPTIMI.BAT batch file to execute optimization

echo off

cls

echo OPTIMIZATION BATCH FILE TO TEST APPROXIMATIONS WITH ANSYS AND CONMI

echo
echo ...... START OF OPTIMIZATION PROCEDURE ......

echo

call to ANSYS with Inltlal design variables set in file

xxxxxxx.dat in ansys format

echo

echo
ERASE %1.OUT

echo
call ANSYS -1%l.dat -O %1.out

COPY %1. DAT %1. OLD

echo
echo First ANSYS run COMPLETED.

echo
:loop1
call browse %1.out

echo
echo +++++++++++++

Results are wrltten to if.out

IN LOOP +++++++++++++++++

echo

echo call optimization program using design variables and derivatives

echo
call optrun2

echo Iecho

echo --====-= CONVERGED IN APPROXIMATION LOOP ====-==--

copy hist.dat+history.dat hist.dat

echo
ERASE %1.OUT

call ANSYS -1%l.DAT -O %1.out

echo
echo

echo

REM if not converged
goto loop1
REM else

stop

RERUN ANALYSIS (ANSYS)


